1. i. Prove that

$$\cos^2(\theta + 45^\circ) - \frac{1}{2}(\cos 2\theta - \sin 2\theta) \equiv \sin^2\theta$$

[4]

ii. Hence solve the equation

$$6\cos^2(\frac{1}{2}\theta + 45^\circ) - 3(\cos\theta - \sin\theta) = 2$$

for $-90^{\circ} < \theta < 90^{\circ}$.

[3]

iii. It is given that there are two values of θ , where $-90^{\circ} < \theta < 90^{\circ}$, satisfying the equation

$$6\cos^2(\frac{1}{3}\theta + 45^\circ) - 3(\cos\frac{2}{3}\theta - \sin\frac{2}{3}\theta) = k$$

where k is a constant. Find the set of possible values of k.

[3]

- 2. It is given that $f(\theta) = \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ)$.
 - i. Show that $f(\theta) = \cos \theta$. Hence show that

$$f(4\theta) + 4f(2\theta) \equiv 8\cos^4\theta - 3.$$

[6]

- ii. Hence
 - a. determine the greatest and least values of $\frac{1}{f(4\theta) + 4f(2\theta) + 7}$ as θ varies,

[3]

Sin $(12a + 30^{\circ}) + \cos(12a + 60^{\circ}) + 4\sin(6a + 30^{\circ}) + 4\cos(6a + 60^{\circ}) = 1$

for
$$0^\circ < \alpha < 60^\circ$$
.

[4]

[4]

3. Prove that
$$\sin^2(\theta + 45)^\circ - \cos^2(\theta + 45)^\circ \equiv \sin 2\theta^\circ$$
.

END OF QUESTION paper

Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	State cosθ cos 45 – sinθ sin 45	B1	or equiv including use of decimal approximation for $\frac{1}{\sqrt{2}}$	
	i	Use correct identity for sin 20 or cos 20	B1	must be used; not earned for just a separate statement	
	i	Attempt complete simplification of left-hand side	M1	with relevant identities but allowing sign errors, and showing two terms involving sinθ cosθ	
				AG; necessary detail needed	
				Examiner's Comments	
	i	Obtain sin² θ	Α1	24% of the candidates earned all four marks for this proof. Success needed thorough knowledge of the relevant trigonometry plus care with detail. Most candidates earned a mark for an appropriate identity involving sin20 or cos20 but, for many candidates, that was the only mark they earned. The main problem concerned the term cos ² (θ + 45°); candidates realised that expansion was needed but, all too often, this was cos ² θ cos ² 45° – sin ² 45°. Other candidates did start with (cos θ cos 45° – sin θ sin 45°)?, or the corresponding version involving the exact values of cos 45° and sin 45°, but the expansion then often omitted the term involving sin θ cos θ . Once mistakes like these had been made, the identity could not be proved but many candidates did persevere with some involved, if doomed, attempts to try to reach sin ² θ . A few candidates showed pleasing mathematical awareness by rewriting the first term of the left-hand side as $\frac{1}{2} + \frac{1}{2} \cos(2\theta + 90°)$ which simplifies to $\frac{1}{2} - \frac{1}{2} \sin 2\theta$; completion of the proof followed quickly.	

	ii	Use identity to produce equation of $\sin \frac{1}{2}\theta = c$	M1	condoning single value of constant c here (including values outside the range –1 to 1); M0 for sin $\Theta = c$ unless value(s) are subsequently doubled	
	ii	Obtain 70.5 or 70.6	A1	or greater accuracy 70.528	
				or greater accuracy –70.528; following first answer; and no other answer between –90 and 90; answer(s) only: 0/3 Examiner's Comments	
				Many candidates seemed unaware of the fact that the identity established in	
	ii	Obtain –70.5 or –70.6	A1√	part (i) was related to the equation in this part and they tried manipulation of the given equation. Others did try to exploit the earlier part but, with a lack of attention to detail, proceeded to solve $6\sin^2\theta = 2$. Many candidates did proceed with the correct $6\sin^2\frac{1}{2}\theta = 2_{and 25\%}$ of all the candidates concluded with the two correct angles. Other candidates	
				gave one correct answer 70.5° but omitted the other possibility of 70.5–°.	
	iii	$\operatorname{State or imply} 6\sin^2 \frac{1}{3}\theta = k$	B1		
	iii	Attempt to relate <i>k</i> to at least 6sin ² 30°	M1		
	111	Obtain $0 < k < \frac{3}{2}$	A1	condone use of \leq Examiner's Comments This was a testing conclusion to the paper but 6% of candidates were equal to the challenge and answered accurately. There were many others who made significant progress, recognising that the value of <i>k</i> was less than $\frac{3}{2}$ but then concluding with $-\frac{3}{2} < k < \frac{3}{2}$, a result that overlooks the fact that $6\sin^2 \frac{1}{3}$ \exists cannot be negative.	
		Total	10		

2	i	Use at least one addition formula accurately	M1	Without substituting values for cos30°, etc. yet	
	i	Obtain cosθ	A1	AG; necessary detail needed	
	i	State $\cos 4\theta = 2\cos^2 2\theta - 1$	B1	$Or\cos 4\theta = \cos^2 2\theta - \sin^2 2\theta$	
	i	Attempt correct use of relevant formulae to express in terms of cosθ	M1	Or in terms of cosθ and sinθ	
	i	Obtain correct unsimplified expression in terms of cos0 only	A1	e.g. $2(2c^2 - 1)^2 - 1 + 4(2c^2 - 1)$	
	i	Simplify to confirm $8\cos^4 \theta - 3$	A1	AG; necessary detail needed	
				Examiner's Comments	
	i			This question contained challenges for even the best candidates and only 13% of the candidates recorded all thirteen marks. The first two marks of part (i) were obtained by most but convincing and concise responses to the subsequent proof were not so common. Many candidates did not take the trouble to present solutions in such a way that they were easy to follow, or indeed to read. On some scripts, it was often difficult for examiners to decide whether candidates had written cos20 or cos ² 0. In other cases, parts of the proof were scattered around the page and efforts to reassemble the parts did not always succeed. The main difficulty was dealing with cos40. Some decided that, since cos20 = cos ² 0 – sin ² 0, cos40 must be cos ⁴ 0 – sin ⁴ 0. Many did state cos40 = cos ² 20 and sin0; considerable care was then needed to reach a successful conclusion. The best solutions usually involved use of cos40 = 2cos ² 20 – 1 and cos20 = 2cos ² 0 – 1.	
	ii	(a) Obtain 12	B1		
	ii	Substitute 0 for cosθ in correct expression	M1	No need to specify greatest and least	
	ii	Obtain $\frac{1}{4}$	A1		

i	1	1	1	Proof involvir	ng Trigonometric Functions
				Examiner's Comments	
				Dart (ii)(a) proved demonding for many	
				Part (ii)(a) proved demanding for many; about as many earned no marks as	
				earned all three. A few carelessly	
				considered	
				1	
				$\overline{8\cos^4 heta-3}$ For those	
	ii			dealing with the correct	
				1	
				$\frac{1}{8\cos^4 \theta + 4}$ the value $\frac{1}{12}$	
				usually appeared but many candidates	
				mistakenly decided that the other	
				requested value would result from	
				cos⁴θ being −1.	
	ii	(b) State or imply $8\cos^4 (3\alpha) - 3 = 1$	B1	Or $2\cos^2 6\alpha + 4\cos 6\alpha - 2 = 0$	
				Allow for equation of form $\cos^4 (3\alpha) =$	
	ii	Attempt correct method to obtain at	M1	k where 0 < k < 1 or for three-term	
		least one value of a		quadratic equation in cos6a	
				0 10 10 001	
	ii	Obtain 10.9	A1	Or greater accuracy 10.921	Answer(s) only: 0/4
	ii	Obtain 49.1	A1	Or greater accuracy 49.078; and no	
				others between 0 and 60	
				Examiner's Comments	
				Many candidates saw no connection	
				between the equation in part (ii)(b) and	
				the results in part (i). Their attempts	
				involved starting afresh and it was very	
				seldom that any significant progress	
				was made. Some made a connection	
				with the first result from part (i) and	
				formed the equation $\cos 12a + 4\cos 6a$	
	ii			= 1. Not all knew how to deal with this; for those who did, replacement of	
				6α by another letter sometimes meant	
				that the solution of the equation was	
				not completed correctly. The other	
				successful approach involved	
1		1	1		
				recognising the link with the main	
				recognising the link with the main result from part (i). However, the	
				result from part (i). However, the attempt to solve the corresponding	
				result from part (i). However, the	
				result from part (i). However, the attempt to solve the corresponding	

Proof involving Trigonometric Functions

				corresponding to $\cos(3\alpha) = -\sqrt[4]{\frac{1}{2}}$
		Total	13	
3		Summary of method Use of $cos(A + B)$ or $sin(A + B)$ or $cos2\theta$ formula Correct result Use of one of the above or $sin2\theta$ formula Correctly obtain result Example of method $sin^2 (\theta + 45) - cos^2 (\theta + 45) \equiv -cos$ $2(\theta + 45)$ $\equiv -cos (2\theta + 90)$ $\equiv - [cos 2\theta cos 90 - sin 2\theta sin 90] \equiv$ $sin 2\theta AG$	M1 (AO 3.1a) A1 (AO 2.1) M1 (AO 1.1) A1 (AO 1.1) M1 A1 M1 [4]	Correct formula Correct formula Use of correct cos2 θ formula Correct result Use of correct result Use of correct result Use of correct cos(A + B) formula Must see this step and final answer Examiner's Comments A large variety of correct methods were seen, some shorter than others. Some candidates made mistakes in quoting formulae, despite the formulae being given on the question paper.
		Total	4	